III B.Tech - II Semester - Regular Examinations - JUNE 2023

POWER SYSTEMS ANALYSIS
 (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries
14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Outline the advantages of per unit system also explain the need of the per unit system.	L4	CO5	7 M
	b)	Develop the PU impedance diagram for the power system shown in given figure. Neglect resistance and use a base of $100 \mathrm{MVA}, 220 \mathrm{kV}$ in 50 ohms line. The rating of the generator, motor and transformer are:	L3	CO 2	7 M

		OR			
2	a)	Deduce the following relation $\mathrm{Z}_{\mathrm{pu}(\text { new })}=\mathrm{Z}_{\mathrm{pu}(\text { old })} \mathrm{X} \frac{\mathrm{MVA}_{\mathrm{BASE}(\mathrm{NEW})}}{\mathrm{MVA}_{\mathrm{BASE}(\mathrm{OLD})}} \mathrm{X} \frac{(\mathrm{KV})_{\mathrm{BASE}(\mathrm{OLD})}^{2}}{(\mathrm{KV})_{\text {BASE(NEW) }}^{2}}$	L4	CO5	7 M
	b)	Construct the PU impedance diagram for the power system shown in given figure. Neglect resistance and use a base of $100 \mathrm{MVA}, 110 \mathrm{kV}$ in 80 ohms line. The rating of the generator, motor and transformer are:	L3	CO 2	7 M

UNIT-II

	Table 2								
		Bus Code	P	Q	V	Remarks			
		1	-		$1.06 \angle 0^{0}$	Slack			
		2	0.2	0.3		PQ			
		3	0.6	0.25		PQ			
UNIT-III									
5	a)	Deduce the expressions for elements of Jacobian matrix in Newton Raphson Method of solving load flow equations in polar coordinates form.					L4	CO4	7 M
	b)	Deduce the load flow equation of Newton Raphson Method.					L4	CO4	7 M
OR									
6 Construct the flow chart for Newton Raphson Method for load flow solutions in polar coordinate form.							L3	CO3	14 M
UNIT-IV									
7	a)	Outline the advantages of symmetrical components. Deduce an expression for fault current when line to line fault occurs on the terminals of an unloaded alternator? Draw the sequence network diagram.					L4	CO5	7 M
	b)						L4	CO5	7 M
OR									
8	a)	Deduce an expression for fault current when single line to ground fault occurs on the terminals of an unloaded alternator through a fault impedance Z_{f}. Draw the sequence network diagram.					L4	CO5	7 M

	b)	A $50 \mathrm{MVA}, 12.6 \mathrm{kV}$, 3-phase, 50 Hz generator has its neutral earthed through a 7% reactor. It is in parallel with another identical generator having its neutral earthed through a 7% reactor. Each generator has positive, negative and zero sequence reactance's which are $10 \%, 7 \%$ and 5% respectively. When line to ground short circuit occurs in the common bus bar, determine the fault current.	L3	CO 2	7 M
UNIT-V					
9	a)	Analyze the stability of the power system when there is a sudden change in the mechanical input by the application of equal area criterion.	L4	CO 4	7 M
	b)	Outline the methods to improve transient stability.	L4	CO 4	7 M
OR					
10	a)	Deduce the swing equation.	L4	CO4	7 M
	b)	Find the steady state power limit of a system consisting of a generator with reactance 0.6 p.u. connected to an infinite bus through a reactance of $0.8 \mathrm{p} . \mathrm{u}$. The terminal voltage of the generator is 1.15 p.u. and the voltage of infinite bus is 1.0 p.u.	L4	CO4	7 M

