PVP 20

Code: 20EE3603

III B.Tech - II Semester - Regular Examinations - JUNE 2023

POWER SYSTEMS ANALYSIS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL –	Blooms	Level
------	--------	-------

 CO – Course Outcome

3.4

1

							BL	CO	Max.		
									Marks		
				UNIT-I							
1	a)	Outline the ad	also	L4	CO5	7 M					
		explain the nee									
	b)	Develop the	PU impe	dance diagra	am for	the	L3	CO2	7 M		
		power system	shown i	n given figu	re. Neg	glect					
		resistance and use a base of 100 MVA, 220 kV in									
		50 ohms line.									
		and transformer									
		Generator	6								
		Motor	50 MVA	11 kV	X'' = 300	6					
		Y-Y transformer	40 MVA	33Y-220Y kV	X = 15%	Ď					
		Y- Δ transformer	30 MVA	11∆- 220Y kV	X = 15%	Ď					
		[╡] ᠳ <mark>ᡋ᠊ᠴᢩᡰᠴ}</mark> ᠮ] j!	بِّ ۵ ^{۵۵}	ال مام م	Jan-					

		OR			
2	a)	Deduce the following relation	L4	CO5	7 M
		$Z_{pu(new)} = Z_{pu(old)} X \frac{MVA_{BASE(NEW)}}{MVA_{BASE(OLD)}} X \frac{(KV)^{2}_{BASE(OLD)}}{(KV)^{2}_{BASE(NEW)}}$			
		$\Sigma_{pu(new)} - \Sigma_{pu(old)} \Lambda MVA_{BASE(OLD)} \Lambda (KV)^{2}_{BASE(NEW)}$			
	b)	Construct the PU impedance diagram for the	L3	CO2	7 M
		power system shown in given figure. Neglect			
		resistance and use a base of 100 MVA, 110 kV			
		in 80 ohms line. The rating of the generator,			
		motor and transformer are:			
		Generator1 50 MVA 13.8 kV $X'' = 15\%$			
		Generator240 MVA33 kV $X'' = 20\%$			
		Y-Y transformer 60 MVA $16Y-110Y \text{ kV}$ $X = 10\%$ We have: 40 MVA 224 - 110Y kV $X = 10\%$			
		Y- Δ transformer40 MVA33 Δ - 110Y kVX = 15%			
		ž tμř ž			
	I	UNIT-II	I	1	
3	a)	Classify the types of buses in power system.	L4	CO4	7 M
		Explain the necessity of power flow studies.			
	b)	Develop the algorithm for Gauss Seidel Method	L3	CO3	7 M
		for load flow solutions with PQ bus.			
		OR			
4	Th	e load flow data for a three bus system are	L3	CO3	14 M
	sho	own in Table 1 and Table 2. Solve for the bus			
	vo	ltages at the end of first iteration by Gauss Seidel			
		ethod. Table 1			
		Bus Code Impedance			
		1-2 $0.07 + j0.20$			
		1-3 $0.01 + j0.05$			
		J			
		2-3 $0.02 + j0.15$			

	Table 2										
		Bus Code	Р	Q	V	Remarks					
		1	-	-	1.06∠ 0 ⁰	Slack					
		2	0.2	0.3	-	PQ					
		3	0.6	0.25	-	PQ					
	UNIT-III										
5	a)	Deduce the	e ez	press	ions for	elements	of	L4	CO4	7 M	
		Jacobian ma	trix i	n Nev	wton Rapł	nson Metho	od of				
		solving lo	ad	flow	equatio	ns in p	polar				
		coordinates f	form	•							
	b)	Deduce the	loa	d flo	w equation	on of Nev	wton	L4	CO4	7 M	
		Raphson Me	thod	•							
					OR						
6	Co	onstruct the	flow	char	t for Ne	wton Rap	hson	L3	CO3	14 M	
	Method for load flow solutions in polar coordinate										
	for	m.									
					UNIT-]	Ι					
7	a)	Outline th	e a	ndvant	tages of	symmet	rical	L4	CO5	7 M	
	components.										
	b) Deduce an expression for fault current when						when	L4	CO5	7 M	
	line to line fault occurs on the terminals of a										
	unloaded alternator? Draw the sequenc										
	network diagram.										
OR											
8	a)	Deduce an	expr	ession	for fault	t current w	vhen	L4	CO5	7 M	
	single line to ground fault occurs on the						the				
		terminals of an unloaded alternator through a									
	fault impedance Z _f . Draw the sequence network						work				
		diagram.									

				1	1
	b)	A 50 MVA, 12.6 kV, 3-phase, 50Hz generator	L3	CO2	7 M
		has its neutral earthed through a 7% reactor. It			
		is in parallel with another identical generator			
		having its neutral earthed through a 7% reactor.			
		Each generator has positive, negative and zero			
		sequence reactance's which are 10%, 7% and			
		5% respectively. When line to ground short			
		circuit occurs in the common bus bar,			
		determine the fault current.			
-			•		
		UNIT-V			
9	a)	Analyze the stability of the power system when	L4	CO4	7 M
		there is a sudden change in the mechanical			
		input by the application of equal area criterion.			
	b)	Outline the methods to improve transient	L4	CO4	7 M
		stability.			
		OR			
10	a)	Deduce the swing equation.	L4	CO4	7 M
	b)	Find the steady state power limit of a system	L4	CO4	7 M
		consisting of a generator with reactance 0.6 p.u.			
		connected to an infinite bus through a reactance			
		of 0.8 p.u. The terminal voltage of the generator			
		is 1.15 p.u. and the voltage of infinite bus is			
		1.0 p.u.			